/* Test Grid::congruences(). Copyright (C) 2001-2009 Roberto Bagnara This file is part of the Parma Polyhedra Library (PPL). The PPL is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The PPL is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1307, USA. For the most up-to-date information see the Parma Polyhedra Library site: http://www.cs.unipr.it/ppl/ . */ #include "ppl_test.hh" namespace { // Empty grid. bool test01() { Grid gr1(7, EMPTY); Grid known_gr = gr1; Constraint_System cs = gr1.constraints(); Grid gr2(cs); bool ok = (gr2 == known_gr); print_constraints(cs, "*** cs ***"); print_congruences(gr2, "*** gr2(cgs) ***"); return ok; } // Universe grid. bool test02() { Grid gr1(7); Grid known_gr = gr1; Constraint_System cs = gr1.constraints(); Grid gr2(7); gr2.add_constraints(cs); bool ok = (gr2 == known_gr); print_constraints(cs, "*** cs ***"); print_congruences(gr2, "*** gr2(cgs) ***"); return ok; } // Zero dimension empty grid. bool test03() { Grid gr1(0, EMPTY); Constraint_System cs = gr1.constraints(); Grid known_gr(Constraint_System::zero_dim_empty()); bool ok = (gr1 == known_gr); print_congruences(gr1, "*** gr1 ***"); return ok; } // Zero dimension universe grid. bool test04() { Grid gr1(0); Grid known_gr = gr1; Constraint_System cs = gr1.constraints(); Grid gr2(0); gr2.add_constraints(cs); bool ok = (gr2 == known_gr); print_constraints(cs, "*** cs ***"); print_congruences(gr2, "*** gr2(cgs) ***"); return ok; } // Skew grid in 3D. bool test05() { Variable A(0); Variable B(1); Grid gr1(3); gr1.add_congruence((A + B %= 3) / 7); gr1.add_congruence((A %= 0) / 5); Grid known_gr = gr1; Constraint_System cs = gr1.constraints(); Grid gr2(3); gr2.add_constraints(cs); gr2.add_congruence((A + B %= 3) / 7); gr2.add_congruence((A %= 0) / 5); bool ok = (gr2 == known_gr); print_constraints(cs, "*** cs ***"); print_congruences(gr2, "*** gr2(cgs) ***"); return ok; } // Single point in 2D bool test06() { Variable A(0); Variable B(1); Grid gr1(3); gr1.add_congruence((A + B %= 3) / 0); gr1.add_congruence((A %= 0) / 0); Grid known_gr = gr1; Constraint_System cs = gr1.constraints(); Grid gr2(3); gr2.add_constraints(cs); bool ok = (gr2 == known_gr); print_constraints(cs, "*** cs ***"); print_congruences(gr2, "*** gr2(cgs) ***"); return ok; } // Linear points in 2D bool test07() { Variable A(0); Variable B(1); Grid gr1(3); gr1.add_congruence((A + B %= 3) / 2); gr1.add_congruence((A %= 0) / 0); Grid known_gr = gr1; Constraint_System cs = gr1.constraints(); Grid gr2(3); gr2.add_constraints(cs); gr2.add_congruence((A + B %= 3) / 2); bool ok = (gr2 == known_gr); print_constraints(cs, "*** cs ***"); print_congruences(gr2, "*** gr2(cgs) ***"); return ok; } // Empty grid. bool test08() { Grid gr1(7, EMPTY); Grid known_gr = gr1; Constraint_System cs = gr1.minimized_constraints(); Grid gr2(cs); bool ok = (gr2 == known_gr); print_constraints(cs, "*** cs ***"); print_congruences(gr2, "*** gr2(cgs) ***"); return ok; } // Universe grid. bool test09() { Grid gr1(7); Grid known_gr = gr1; Constraint_System cs = gr1.minimized_constraints(); Grid gr2(7); gr2.add_constraints(cs); bool ok = (gr2 == known_gr); print_constraints(cs, "*** cs ***"); print_congruences(gr2, "*** gr2(cgs) ***"); return ok; } // Zero dimension empty grid. bool test10() { Grid gr1(0, EMPTY); Constraint_System cs = gr1.minimized_constraints(); Grid known_gr(Constraint_System::zero_dim_empty()); bool ok = (gr1 == known_gr); print_congruences(gr1, "*** gr1 ***"); return ok; } // Zero dimension universe grid. bool test11() { Grid gr1(0); Grid known_gr = gr1; Constraint_System cs = gr1.minimized_constraints(); Grid gr2(0); gr2.add_constraints(cs); bool ok = (gr2 == known_gr); print_constraints(cs, "*** cs ***"); print_congruences(gr2, "*** gr2(cgs) ***"); return ok; } // Skew grid in 3D. bool test12() { Variable A(0); Variable B(1); Grid gr1(3); gr1.add_congruence((A + B %= 3) / 7); gr1.add_congruence((A %= 0) / 5); Grid known_gr = gr1; Constraint_System cs = gr1.minimized_constraints(); Grid gr2(3); gr2.add_constraints(cs); gr2.add_congruence((A + B %= 3) / 7); gr2.add_congruence((A %= 0) / 5); bool ok = (gr2 == known_gr); print_constraints(cs, "*** cs ***"); print_congruences(gr2, "*** gr2(cgs) ***"); return ok; } // Single point in 2D bool test13() { Variable A(0); Variable B(1); Grid gr1(3); gr1.add_congruence((A + B %= 3) / 0); gr1.add_congruence((A %= 0) / 0); gr1.add_congruence((B %= 3) / 0); gr1.add_congruence((A - B %= -3) / 0); Grid known_gr = gr1; Constraint_System cs = gr1.minimized_constraints(); Grid gr2(3); gr2.add_constraints(cs); bool ok = (gr2 == known_gr); print_constraints(cs, "*** cs ***"); print_congruences(gr2, "*** gr2(cgs) ***"); return ok; } // Linear points in 2D bool test14() { Variable A(0); Variable B(1); Grid gr1(3); gr1.add_congruence((A + B %= 3) / 2); gr1.add_congruence((A %= 0) / 0); gr1.add_congruence((3*A %= 0) / 0); Grid known_gr = gr1; Constraint_System cs = gr1.minimized_constraints(); Grid gr2(3); gr2.add_constraints(cs); gr2.add_congruence((A + B %= 3) / 2); bool ok = (gr2 == known_gr); print_constraints(cs, "*** cs ***"); print_congruences(gr2, "*** gr2(cgs) ***"); return ok; } } // namespace BEGIN_MAIN DO_TEST(test01); DO_TEST(test02); DO_TEST(test03); DO_TEST(test04); DO_TEST(test05); DO_TEST(test06); DO_TEST(test07); DO_TEST(test08); DO_TEST(test09); DO_TEST(test10); DO_TEST(test11); DO_TEST(test12); DO_TEST(test13); DO_TEST(test14); END_MAIN