Skip to main content
replaced http://math.stackexchange.com/ with https://math.stackexchange.com/
Source Link

Lets consider propositional logic. We say a proof system for propositional logic is syntactically (negation) complete if for every $\alpha$, either $\alpha$ or $\neg \alpha$ are provable within the system, i.e., $\Sigma \vdash \alpha$ or $\Sigma \vdash \neg \alpha$. (I assume standard definitions for $\Sigma$ and $\vdash$).

It seems to be me that no sound proof system for propositional logic could prove $p$ or $\neg p$ from empty set of sentences, where $p$ is a propositional atom. So, propositional logic is not syntactically complete.

Now, it is to my understanding that this is kind of completeness Godel was considering in his Incompleteness Theorem for FOL. Since FOL (with abuse of terminology) subsumes propositional logic, it trivially holds that FOL is not syntactically complete either. This seems to simple, so I am wondering what am I doing wrong? Or his proof focused on Peano arithmetic specifically?

Related: linklink

Lets consider propositional logic. We say a proof system for propositional logic is syntactically (negation) complete if for every $\alpha$, either $\alpha$ or $\neg \alpha$ are provable within the system, i.e., $\Sigma \vdash \alpha$ or $\Sigma \vdash \neg \alpha$. (I assume standard definitions for $\Sigma$ and $\vdash$).

It seems to be me that no sound proof system for propositional logic could prove $p$ or $\neg p$ from empty set of sentences, where $p$ is a propositional atom. So, propositional logic is not syntactically complete.

Now, it is to my understanding that this is kind of completeness Godel was considering in his Incompleteness Theorem for FOL. Since FOL (with abuse of terminology) subsumes propositional logic, it trivially holds that FOL is not syntactically complete either. This seems to simple, so I am wondering what am I doing wrong? Or his proof focused on Peano arithmetic specifically?

Related: link

Lets consider propositional logic. We say a proof system for propositional logic is syntactically (negation) complete if for every $\alpha$, either $\alpha$ or $\neg \alpha$ are provable within the system, i.e., $\Sigma \vdash \alpha$ or $\Sigma \vdash \neg \alpha$. (I assume standard definitions for $\Sigma$ and $\vdash$).

It seems to be me that no sound proof system for propositional logic could prove $p$ or $\neg p$ from empty set of sentences, where $p$ is a propositional atom. So, propositional logic is not syntactically complete.

Now, it is to my understanding that this is kind of completeness Godel was considering in his Incompleteness Theorem for FOL. Since FOL (with abuse of terminology) subsumes propositional logic, it trivially holds that FOL is not syntactically complete either. This seems to simple, so I am wondering what am I doing wrong? Or his proof focused on Peano arithmetic specifically?

Related: link

Tweeted twitter.com/#!/StackCompSci/status/503312391657238529
added 55 characters in body
Source Link
zpavlinovic
  • 1.7k
  • 10
  • 19

Lets consider propositional logic. We say a proof system for propositional logic is syntactically (negation) complete if for every $\alpha$, either $\alpha$ or $\neg \alpha$ are provable within the system, i.e., $\Sigma \vdash \alpha$ or $\Sigma \vdash \neg \alpha$. (I assume standard definitions for $\Sigma$ and $\vdash$).

It seems to be me that no sound proof system for propositional logic could prove $p$ or $\neg p$ from empty set of sentences, where $p$ is a propositional atom. So, propositional logic is not syntactically complete.

Now, it is to my understanding that this is kind of completeness Godel was considering in his Incompleteness Theorem for FOL. Since FOL (with abuse of terminology) subsumes propositional logic, it trivially holds that FOL is not syntactically complete either. This seems to simple, so I am wondering what am I doing wrong? Or his proof focused on Peano arithmetic specifically?

Related: link

Lets consider propositional logic. We say a proof system for propositional logic is syntactically (negation) complete if for every $\alpha$, either $\alpha$ or $\neg \alpha$ are provable within the system, i.e., $\Sigma \vdash \alpha$ or $\Sigma \vdash \neg \alpha$. (I assume standard definitions for $\Sigma$ and $\vdash$).

It seems to be me that no sound proof system for propositional logic could prove $p$ or $\neg p$ from empty set of sentences, where $p$ is a propositional atom. So, propositional logic is not syntactically complete.

Now, it is to my understanding that this is kind of completeness Godel was considering in his Incompleteness Theorem for FOL. Since FOL (with abuse of terminology) subsumes propositional logic, it trivially holds that FOL is not syntactically complete either. This seems to simple, so I am wondering what am I doing wrong?

Related: link

Lets consider propositional logic. We say a proof system for propositional logic is syntactically (negation) complete if for every $\alpha$, either $\alpha$ or $\neg \alpha$ are provable within the system, i.e., $\Sigma \vdash \alpha$ or $\Sigma \vdash \neg \alpha$. (I assume standard definitions for $\Sigma$ and $\vdash$).

It seems to be me that no sound proof system for propositional logic could prove $p$ or $\neg p$ from empty set of sentences, where $p$ is a propositional atom. So, propositional logic is not syntactically complete.

Now, it is to my understanding that this is kind of completeness Godel was considering in his Incompleteness Theorem for FOL. Since FOL (with abuse of terminology) subsumes propositional logic, it trivially holds that FOL is not syntactically complete either. This seems to simple, so I am wondering what am I doing wrong? Or his proof focused on Peano arithmetic specifically?

Related: link

Source Link
zpavlinovic
  • 1.7k
  • 10
  • 19

Propositional logic --- syntactical completeness

Lets consider propositional logic. We say a proof system for propositional logic is syntactically (negation) complete if for every $\alpha$, either $\alpha$ or $\neg \alpha$ are provable within the system, i.e., $\Sigma \vdash \alpha$ or $\Sigma \vdash \neg \alpha$. (I assume standard definitions for $\Sigma$ and $\vdash$).

It seems to be me that no sound proof system for propositional logic could prove $p$ or $\neg p$ from empty set of sentences, where $p$ is a propositional atom. So, propositional logic is not syntactically complete.

Now, it is to my understanding that this is kind of completeness Godel was considering in his Incompleteness Theorem for FOL. Since FOL (with abuse of terminology) subsumes propositional logic, it trivially holds that FOL is not syntactically complete either. This seems to simple, so I am wondering what am I doing wrong?

Related: link